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ABSTRACT

A planar time-optimal formulation is used to study

the terminal phase of interception above the atmosphere

in a uniform gravitational field. The dependence on

initial conditions of tht optimal steering angle is

examined for initial relative velocities ranging from

5,000 ft/Bee to 50,000 ft/sec and initial distances

up to 500,000 ft. Result, are presented in graphical

form for two typical rockets showing: (1) the range

dependence of terminal error sensitivities to errors in

measurements of initial conditions taker, along the Initial

rectilinear coasting path and (2) the variation in these

terminal error coefficients along optimal interception

paths. Some interceiotlons with proportional control

systems were made and. *mrpared with the optimal paths.

This report has been reviewed and is approved.

PA, SLOAN, J
Colonel, USAF/
Chief, Flight Contr.ol Division
AF Flight Dynamics Laboratory
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LIST OF SYMBOLS

x,:, - ,elative distance compnnents In target centered

coordinate frame (ft.)

V - relative velocity in x-direction (ft/sec.)x

"V -,- relative velocity in y-dlrection (-ft/sec.)

V - relatIve velocity (ft/sec.)

R - relative range (ft/sec.)

- argle between V and positive x-axis. Measured

In poslut 'se ce c:h~

V (deg.)

c - thrust direction angle measured positive counter-

clockwise from x-axis to thrust vector (deg.)

T - time at which minimum controlled miss distance with

perturbed thrust direction angle occurs (sec.)

m 0- initial vehicle mass (total)

- propellant mass flow rate (slugs/sec.)

co - rocket effective exhaust velocity (ft/sec.)

tb - length of thrusting period (sec.)

Po - minimum uncontrolled miss distance (ft.)

to - time at which minimum uncontrolled miss distance

occurs (sec.)

p - minimum controlled miss distance (ft.)

to - time at which minimum controlled miss distance
occurs (sec.)

t - maximum permissible period of initial coast

F - thrust vector
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SECTI0C1 1

INTRODUCTION

We examine the terminal phase of an interception

problem in terms of a minimum time formulation. The
problem is based on a simplified model; the target is

assumed to be non-mancuvering and moving In a plane

under the influence of a uzniform gravitational field.

The eni6.re interceptioo takes place above the sencible

atmosphere, The minimum time interceptLon steering

program Is a constant angle in inertial space. The

simple form of the optimal control Is appealing; there

may be situations where time optimality Is unimportant,

yet the form of the control law may prove to be a signi-

ficant factor In the design of the flight control and

guidance systems. The terminal phase of an interception

may take place in a very short span of time. For

example, only about two seconds elapse between the time

a target is acquired and the time a target is passed if

the initial range is 20 miles and the rplative speed Is

50,000 ft/sec. In this study we do not try to map out

the regions of accessibility for different interceptor

rocket parameters. We do present some typical trajec-

tories so that the nature of the optimal paths can be

seen in some specific instances. Our goal in the work

was to see how the optimal control could be used in an

operational sense, to point out the critical areas from

the standpoint of feasibility, and to provide an

analysis and a computer program for simulated inter-

ceptions. Relative velocities ranging from 5000 ft/sec.

to 50,000 feet, and initial (no control) miss distances
up to 43,000 feet are used in the illustrative examples.

Manuscript released by the authors July 1964 for publi-

cation as an RTD Technical Documentary Report.
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The error coefficients, i.e., the partial derivatives

of the final miss distance with respect to initial conditions,

form an essential part of the study. These coefficients

depend on all the initial conditions. The computation

of the optimal control depends on the use of measured

values of' the relative range and velocity between the
target and interceptor. These measurements may be

accomplished by ground based, or missile based equipment.

The control zomputer uses these measurements of relative

position and velocity to calculate the optimal steering

program. Errors in measuring position and velocity

generate errors in the calculated steering program

which in turn cause errors in the path and final miss

distance. The interceptor must have a means for guiding

the direction of the rocket thrust. Errors in carrying

out the commanded steering program also cause errors in

the end conditions. The sensitivity of the entire

system operation to random errors occuring at various

points in the control loop must be determined so that

steps may be taken to minimize the expected miss distance,

variance of' the terminal error, or some other performance

criterion. We will not consider the problem of optimizing

statistical properties of the end conditions. We will

outline a method for estimating the statistics of the

terminal errors.

The control for a time optimal interception, based

on a deterministic formulation, ignites the rocket as

soon as the target is sighted. A control policy based

on stochastic considerations might not do this. The

initial estimates of relative position and velocity may

be poor and might be expected to improve as more obser-

vations are made along the coasting path. That is, it

may be better to ,:ontinue coasting towards the target

2



making measurements and waiting for an opportune time to

ignite the rocket. It still remains to specify what Is

meant by an opportune time. Suppose that once the

optimal steering angle is determined the rocket direc-

tiou is held ftxed in spae. by a stabilization systcm

and further corrections are not allowed; this is an

open-loop temrminal guidance scheme. The best time to

fire is the time when the sensitivity to errors in the

initial conditions is least provided that the intercept

can still be made. The definition of least sensitivity

to errors is open to interpretation, but this will not

be pursued in any greater detail at this point. Correc-

tions to the steering angle made during powered flight

require a closed-loop terninal guidance system. The

sensitivity to errors depends not only on the sensitivity

coefficients tiken at the initial time but on the inte-

grated effect of errors made during powered f!ight.

Several sample sets of open-loop error coefficients are

computed along coasting paths, as well as closed-loop

coefficients computed along optimal trajectories. These

error coefficients yield the expected terminal errors

for both open-loop systems and closed-loop flight control

systems for the aample optimal paths. The closed-loop

analysis requires knowledge of the noise characteristics

of the sensors and other components of the guidance

systems.

3



SECTION 2

FORMULATION OF THE PROBLEM

i. TIme Optlmsl Intercept~on.

2 .. . ...I.± -U to C, w'•"a of 1'9 '1 wno trt bioW

In canonical form

ix

y =v
y

= Cos cz

= sinca

y

-y

Figure 1. Coordinate System

We want to bring the state variables x and y to zero

simultaneously in the least time. There are no specifi-

cations placed on the terminal values of vx and vy.

In the equations above, co is the rocket character-

istic exhaust velocity, m. is the initial system mass,

P is the propellant mass flow rate, and a is 'he direc-

tion of the rocket thrust measured from the positive x

axis. The coordinate system is shown in Fig. 1. Tthe target

4



is assumed to be falling freely under a uniform gravitational

field. The origin of the coordinate system is placed at
the target. The entire interception is assumed to take

place above the atmosphere.

The optimal control. Is PasIly obtained from the

maximum principle (I, 2). Introduce adjoint variables
pi(i 0 0...4) and form the Hami tonian

4
7, Pix1  P + p2px + P3vx + P 4  + P0

or c c
H plVx + pv + Po cosa+P4m/ -7  sn a + Po

0 0

Maximizing H over all a yields the result

o P4()
Tan a 0 3ý 7

The adjint variables pi satisfy the equations
aH

Pl(t) p 2 (t) 1

P 3 (t) - pI(O)

P4(t) = - P 2 (O)

Therefore

Tan a -= = constant

The optimal angle, CL 0, and the optimal time to

for each initial condition can be found by solving a pair
of transcendental equations. These equations are obtained
from the integration of the equ'ations of motion:

x~t0 )= 'O°M [(I-tPn (tm.l-t° -- os c° . V0(O)t° + x(o)

• ~ m "X~o (!• ,ojl o÷ (O)to + (O)

Y(to)m--o (. -2[n(1-t>r ( 2)~. topjsin -0 + v,(O)to + y(O)

5



These equations may be solved by squaring, eliminating

CA° and frindirg t° The relations between t ,

and the inJtial conalditops are then used to find a

A graphical solution developed by Faulkner Is

dcQscrlbcd in Reference 2. The method used in this study

is described in the Appendix.

2. Closed-Loop Systems with Random Noise.
the Su.• -,on of +-he Puat lons• 1-deve-lope" 1 in Part -

of this section gives the optimal steering angle as a

function of the initial conditions. Thce closed-loop

flight control system based on this steering law will

have to operate in the presence of noise. We distinguish

between the actual state of the system, the measured

state, and the best estimate of the state; the control

is computed on the basis of the best estimate of the

state. If no filter i1 used, the control is computed

directly from the measured state variables. The actual

trajectory evolves from the initial state, x(O) , in

response to the applied control. With no feedback the

trajectory x(t) would miss the target by an amount

calculable from the equations of motion and the error

in control application. The information on measurement

errors, disturbances, and control actuation errors is

assumed to be statistical, i.e., we may not know in

advance what the errors will be but we may know something

about the probability density distribution of the errors.

Let the difference between the nominal trajectory x°(t)

and the actual trajectory x(t) be called 6x i.e.:

x(t) = x°(t) + 8x • The equations governing tie

motion are:

=i(t f (x , a) (1)

6



where x is an n-vector and a Is a scalar' control.

We assume, at least for the present, t>-iat is dilfur-

ent-iabie with respect to x and a. W-, will also assu.rTc_

that the optimal control a 0o(x) can be differentiated

everywhere with respect to x. We shall restrict the

optimal no.~ilnýA path-, to t~hose whiclh r-'t le e-mbedd,_-d in

a field and eliminate aý large class of problemrs, e.g.,

bang-tanGmnmu tlnmve controilevz. It 1"s pos-s'ble, to

analyze the bang-bang problems 'seuarately and thiey w~ll

not b-e ccriside~rcl hecre at all. Kalm-an ha!-s studi~ed prob-

lems of optimal fi"lter-ing anid control for linear syst'ýms

with quadrat ic -performance- criteria k/3,4'. Our analysis

bears a resemblence to so~me of that work, but the mnotiva-

tion here: Is different. We want to estimate the statis-

tical p~roperties oi' the terminal error, but we are, not

going to synthesize an oý'Irnal :itr

We take ur, the e-ase of no fil~tering. We wan-t to

look at the di-f feren~ce between the actual path and the

nominal path and eliminate the observed variables. The

observed values are x =x(actual) + N =xo + 5.x + N

where N Is addit-ive noise. The control applied is
aX a 0 + 6o, where 6 a = + ) 5 Teero

in applying the control is a.The sketch below illus-

trates the general Idea.

08~R~IP PATS

Figure 2. Relation between Actual Path,
Nominal Path and Observed Path

7



All part!a! derivatives are evaluated along the nominal path.

The Ixo wil]l not be used unless there Is a possibility of

amiguity. It follows I rom the- equations 'f mo t on that

=f )f (2)

Substitutir±g for 6a we finH that

)fx ;: ) f 3) 0
X QX

Rearranging terms we get:

6k f =f 7 - 6] +f -t N + f (4-)
ct~

Th- response of the system to initial errors, measurement

ericrý:, and actuation errors is evaluated by solving

Equation (4).

The ihanges in control, ba , depend linearly on
6co

the actual disturbances in the state, I.e., 6a =- I 6x
3~o x°xo

The term 77 Is just a time-varying gain. If we°

have alre:ady synthesized an optimal controller and x_

is available we can examine the behavior of closed-loop

optimal systems. The analysis, however, does not depend

on having an optimal control. It requires only a nominal

path and a linearized feedback equation.

This means that Equation (4) can be used to study

any linearized feedback system with time-varying gains.

Furthermore, there is the possibility of selecting these

time-varying gain:s to optimize a performance criterion

associated with the closed-loop errors. This is the

approach Kalman takes in the previously mentioned work

on optimal linear feedback systems with quadratic criteria.

8



Two -xaiVplý7 arrg ' " how hs rf.ethod

be applied.

Example 1. Linear Servomechanlsm ( regulat or.

The system is described by the following equation

A =Ax + Bu
who_ re

x an nP -vector

A is n X n matrix

B is n X r matrIx

u is an r-vLctor

The commanded control is a linear function of the observe-d

state variables u = kx = k(x + 6x + N). The control

actually applied, u, Is assumed to be the commanded

control, u, modified by additive noise, i.e. u = u +u,

where ý Is the error ir the control. The vector N is

the noise added to the state variables. The actual errors

in the state variables are obtained bY substitution.

6X = A+ B -- 6 x + B (Ao NX+ N B_ (5)

a) If Z[ 0, i.e. perfect control, and N = 0, no
noise, then 6x(t) is determined by 6x(O) only.

b) If 6x(0) = 0, then 6x(t) is determined by the

noises N and •. The linear case with

Gaussian distributions for the random errors

can be solved completely by well-known methods.

Example 2. A Time-Optimal Steering Problem.

Suppose we desire to steer a vehicle with constant

sreed, v, from one location to another in least time.

The equations of motion are

S= V COS a (6a)

y = -v sin a (6b)
where a is the angle between the velocity vector and

the x-axls measured positively counterclockwise.

9



2uppom< t~h,' >arFe%: I s . r -"r,: of" rcvdi•' .en .:-rec,

Sor n as own sn Figure 3 below

X(t), y(t) S~Y

R -C

NOMINAL PATH, -TARGET
YoO=

Figore _R. Timtr OptIiml Steering Example

it is easy to show that tne time optimal steering

2rtg I )ier this problem directs the velocity vector towards

the target at each instant of time. The isochronc3 arc circles

centered at the origin. The application of Equation (4) yields

V, s in o{& (6-i-N )+ = (6-N+ a (7a)6i !•T- 1 Yy- k6y+N2 (a

= vCos c°{ (6x+N2 ) + =(6y+N (7b)

The equation of interest is (7b). We are free to

•hoose the orientation of the coordinate system axes.

The nominal initial conditions can be taken as:

x(O) = X0 , y(O) = 0 and the nominal optimal path will

be y 0 (t) 0.

Along the nominal path = .y = - =0 and
C) "0 Y 2 2 22" A =-a ~-n. Rfor x >>Y where R =x2+Y.

The equation for 6: becomes

6:ý V (6y+N) + VC

10
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or
v vN2  + va6• • (o)-vt X y -)- V

The equation for te ciostd-1oop optimal control has a

singularity at the nominal Interception time; t = x •v
The net effect is to create a feedback gain inversely

proportional to R.
If the initial error 6y(O) is known and if the

noise N2 and actuation error arc known to be statistically

independent thur. the statistical behavior of 6y(t) can

be fo,:nd from the Fokker-Pianck equation (5). In the

case of Gaussian noise, the solutions are easily obtained

by more direct methods. For example, the solution of the

differential equation can be written explicitly az

0+( 4 )-vt / +vx(to)v_

00

Suppose ,•; K(t) where K(t) is prescribed in

advance instead of the optimal feedback. The equations

then are

6, = vK-(t) (6y+N 2 ) + va

If K(t) is constant, then

69 = VK(6y+N 2 ) + va

and the steering problem now is a special case of the

servomechanism problem used in Example 1 with n = 1.

11



This first order differentlal equation represent:.-

a linear trarisrormation of Gaussian processes. The

random function 5y(t) is the sum of two lir-arly trans-

formed Oraussiarn processes and has a Gaussiar distribution.

Suppose, for examplz, that N2 0. Then, return-

ing to Example 2,

t
-,, . + :t _x vt/ xdO)v$y~ 4- y ( 0)- + .2"dT

x(O x(U) X(O) - VT

0

t•,• ,(<0 - t x(C' ,. l~v•_-
E(6y(t) , E(: y( J V _ X -O X -o)V

and

2 -t _ 672 V) vtl2
(5 E(y(t) 1 xo(0) v 6y(O)

[X(0) f • - v2 t1 x(O) - v(J I. Tl, )dT d½

where k-(TIt 2 ) - E{(T(,! ) - U -E)} is tae
autocorrelation function for a- (6). The same result

can be obtained via the weighting function-power

spectral density approach (7).

The analysis discussed in the preceding paragraph

can be applied in a relatively simple way to improve

non-optimal feedback about an optimal path. Suppose

that we use a constant gain feedback (K < 0) based on

the displacement from the nominal path. If the actuator

errors are negligible compared to the measurement errors,

we may write: 6& - vK6y + vKN.

Suppose also that the initial errors and measure-

ment noise have Gaussian distributions with zero means.

Let the variance of the measurement noise be q, and

the noise be "white" such that kN(T,.2) = q6(Tl - T 2 )

and 6 is the Dirac Delta function; the variance of the

initial errors be cy2 (0). The variance at the terminal

12 •



time to is given by

2 2 e2vKt 0  qvK, e2vKt°)
6y(tk) =%6(O) - -

and 6y(t°) has a Gaussian distribution with zero mean2
and variance, C, 2VtO) It is possible to find a value
of ga ' K th•at lriinimizes . o no e -at-

< 0 at K 0 , and 0;o as K -ol We

will not carry t-hese simple example;;s any fiurthc hej

serve the purpose of showing that t-•e error coe•f ents

are dealrable objectS t b,,-ta~n. Threy play an important

role in evaluating the behavior of a control system in the

presence of random nolse. In the next section, we will

exa~nine the dependence of the error coefficients on

initial conditions.

13



SECTION 3

COMPUTATIONAL STUDIES

The discussion in Section 2 was directed at the

analytical formulation of the interception problem. In
this section, we examine the sensitivities of the inter-

ception paths to errors. Figure 4 shows a typical inter-

ception configuration. The parameters of interest are

the initial miss distance, po = R(O) sin 0, the initial

rarge R(O), and the initial velocity V(O). The thrust

level is not adjustable; the optimal steering angle can

be found by the method described in the appendix.

yx1 R (0) x
SF(t)

po =vRo I

Figure 4. Typical Intercept Configuration

Table I contains a partial listing of the cases studied.

The miss distances or distances of closest approach, p,

are given for five values of initial range and four values

of initial velocity. The results are grouped according

to the initial range; each group is ordered according to
the Initial miss distance p0 .

Two rockets were used in this study'and their

characteristics are listed below. These values are

typical of the kina of rockets being considered for

use in missile and satellite interception studies.

14



Rocket #1

co = 10,000 ft/sec- effective exhaust velocity

mf = .15 moi, O/mo= .1/sec, tb = 8.5 sec

a (0) = 30 g (approx.)

a (tb) = 200 g (approx.)

AVideal = 18,900 ft/sec

Rocket #2

co = 10,000 ft/sec

mf .15 moi, /m°= .05/sec, tb = 17.0 sec

a (0) = 15 g (approx.)

a (tb) = 100 g (approx.)

AVideal ,18,9oo ft/sec

These rockets have the same mass ratio (mf/mo) and the
same AVideal' They differ in the burning rate of the

propellant and in the acceleration time history.

Two sets of trajectories are shown in Figures 6
and 7 . (Note that the x-y scales are not the same.)

Each set of figures shows the effect of initial speed

on the interception paths: Figure 6 is for Rocket #1,

Figure 7, for Rocket #2. It may help to refer back to

Figure 1 where the coordinate system is defined.

The trajectories shown in Figures 6 and 7 represent

simulated interceptions with the rocket ignited at the

point of acquisition of the target.

Imagine a situation where there is a possibility

of delaying the ignition of the rocket to improve
the relative position and vwlocity measurement'.

1



Figure 8 shows the family of interception paths for

Rocket #1 emanating from the coasting path starting at

R(O). The target is sighted at a range of 500,000 feet

and the interceptor approaches the target on the coast-

ing path at a speed of 10,000 ft/sec. The miss distance

F 0 oIn the absence of terminal control is 4,363 feet.

Each path in this family is obtained by solving

for the optimal steering angle and computing the optimal

trajectory. The optimal steering angles, a ° are

shown in Figure 8 next to The sta.,ting points. The

optimal steering program to the target from any start-

ing point is constant and is measured from the positive

x-axis as shown in Figure 1. This angle depends on the

Initial conditions and it changes as the starting points

vary along the initial coasting path. The optimal steer-

ing angle changes by about only 7 as the initial range

decreases from 500,000 feet to about 100,000 feet. The

rate of change of steering angle increases sharply

thereafter. The effect of a time delay in igniting the

rocket can be determined by an examination of the rate

of change of ao along the coasting path.

Open-loop miss sensitivities have been found

for each of the starting points shown in the figure.

These partial derivatives represent the sensitivity

of terminal errors to errors in initial measurements

and to -•rrors in steering. These are shown next in

Figure 9. The sensitivity of the error in y(T) at

the distance of' closest approach to errors in o

is shown in Figure 9. The sensitivity of y(T) to
• 0

S.-rrors in a decreases continually as the target

,s approached until the rcnge is very srn-ll. A sharp

Lncrease in 2•eering angle sensitivity with decreas-

Lng range is shown for thc• other, initial conditions in

16



the remaining figures of t:is set. This is not unex-

pected; the a listings o7, Fig. 8 show a rapid change in

the initial steering anrle as the range approaches 40,000

ft. The paths change from head-on interceptions to beam

approach interceptions in this region as the interceptor

coasts by the target. The initial relative velocitj of

10,000 ft/sec is low enough to permit the interceptor to

reverse its direction of motion. Two paths shown in Fig.8

pass the target and reverse direction. The discontinuous

changes in the error sensitivities (shown in Fig. 9) occur

as the interceptor passes a beam of the target.

It is possible to compute some of the partial deriva-

tives directly from the integrals of the equations of

motion, e.g.,

mxt0  
- xt) -0 (i L.yn(l L)+- osina

6x 0  n'n) mo m0  m0 j

1_ - iy(t°) -00 + os a0=aa 0 0  "no.

a=

WyO)

These derivatives are evaluated at the nominal optimal
40 Wo W

time, . The derivatives of the form 5110-), IRA etc.,

are more dcilicult to obtain in closed form as the optimal

angle is given implicitly.

Trajectories with initial relative speeds of 25,000

ft/sec and 50,000 Ut/sec are shown in Figures 10 and 12

with Rocket #1 and in Figures 14 and 16 with Focket #2.

Error coefficients for these cases are given Vn Figures

11, 13, 15, and 17.

17



The prlncLr-,al error coefficirents

are presenled ri iures 18 and -I)(oj ,e tralectcr.ies

of Figures 10, 12, I4, a-d 1i. Jiese are eval ated at T

the tlme cf closest approach tc the t aree w I pert..•u "e

":Krust direct on angle res iti>j Pfrom pert-urat a4Ths in 4..e

initial cond-tions. The error coefT!iclerts

hf: (':) y(T)

)x(o) )k(o)

increase in absolute magnitude as the Initial range

decreases; The coefficient •y(T) decreases In absolute

magnI• .,ide as the range decreases. 7nee locati on of the

best place to Ignite the rocket from the standpoint of

open-loop terminal error dispersion can be found by using

the noise characteristics of the sensors.

The analysis of feedback systems requires the

partial derivatives

8 CO dC 8 , and --)

along the optimal path. The latter three derivatives are

presented in Figures 20 and 21 for the sample cases

discussed earlier. The derivative -7- is very small

except at the very end of the flight and Is rit plotted

here. The derivatives are plotted as functions of R

range. The differential equations require these a.-

functions of time and the computer program provides both

forms. The derivatives generated by the computer program

can be used as indicated in the following paragraphs.
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If the equations for error propagation in an

optimally-controlled system are expanded, we obtain

6x = 6vx1 4 4

6x'= -a(t) sin aLL ý xi + z=Ni - [a(t) 01na
6 Vy 4 4

o Ftc' ___xa + aol
6y= a(t) cos a 6 £ 2LNi +La(t) cos ao]-

i~l i=l

where a(t) mo X 6x, x 2 = 6Vx, x

MF/13 xlV 1 2 ' x3  6y, x
6Vy, Ni = measurement errors, and • is the error in

applying the commanded control.

The quantity a(t) is known from the rocket speci-

fications. The optimal angle, a0 , is a constant along

the nominal path.

The specification of the statistical character' of

the noise Ni and actuation errors a(t) provides the

information needed to evaluate the statistical properties

of the terminal errors. The function a(t) is a rapidly3ao •rjo
increasing function of time. The derivatives ., -a-

-- , J.are also increasing functions of time. *The optimal

steering angle becomes very sensitive to measurement

errors. This may be thought of as a rapid incrcase in

a feedback gain near the end of powered flight.

A time-varying feedback control gain that takes

into account the variation in measurement error statis-

tics along the flirht path may prove to be better than

the closed-loop time optimal controller from the stand-

point of error sensitivity.

The error propagation is governed by a set of

inhomogeneous time-varying linear differential equations.

The forcing functions acting on these equations are 'e

merasurement errors Ni(t) and the actuatLon errors
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Large measurement errors during powered flight may cancel

the benefits derived from feedback of the estimated

position and velocity errors. If there were no measurement

errors, i.e., Ni 0 , then the terminal errors due

to Cz (t) can be reduced by the use of feedback of

position and velocity signals. The presence of measurement

noise, Ni , makes necessary a detailed analysis of

closed-loop guidance. It seems fairly clear that if

the noise level is high compared to the initial errors,
6 xi(O) , it may be desirable to run the system open-loop.

The terms closed-loop and open-loop apply to the use of

commanded changes in the steering angle due to errors

in position and velocity along the nominal path. The

optimal steering angle in either case is to be controlled or

stabilized in direction by some other attitude control system.

We will illustrate the use of results of the computer

program by a simple single variable open loop example.

Suppose that the measurements o, the single variable y

are corrupted by additive noise, the variance .of the

measurement noise •depends linearly on range, and the

commanded control has no errors i.e. a- 0. Suppose

also that one of the graphs in Figure 18 represents the

sensitivity of' terminal errors to errors in initial

determination of position and that this curve can be

satisfactorily approximated by an ex:ponential function.

It is relatively simple to find the best range for

initiating the control to give tne smallest variance in

the terminal errors. The best location occurs either at

an interior point or at one of' tne extreme ends of the

interval beginning at the point or target acquisition

and ending at the last point wnere an interception can

be Initiated. (This interval may not be closed.)We assume

that the taorminal •:=ror depends linearly on 6y(O) for

small initLal errors so that
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Cy(T)(X) = y(- CY((X)I(o y(o) _- Y(O)

An interior minimum Is sou-ght by differentiating the

expression (where y is used in place of y(O))

Y Ly(O)J

with respect to range (x). Yn this exampil-,, '.-e,

C(x): b + cx b, c 'I, x>C

and

F~ T 2 -_2XX<<)y(O) =ae2k

We must look at the zero of

dx(a 2,-2x) (b + cx)]

and see if it lies in the interval of interest and test

to see if we have a maximum or a minimum. Even this

simple example provides some interesting results. The

derivative of the terminal variance with range is

-a 2 e -2%x[2X(b + cx) - c

The vanishing of the derivative corresponds to a

maximum sensitivity; the minimum sensitivity occurs at

one of the endpoints. The minimum location depends
strongly on the parameter b. For b = 0, the derivative

1
vanishes at x = -. The interior extrema do not depend
on the parameter a at all.

This procedure can be applied to multivariable prob-
lems in a straightforward way using co-variance matrices

instead of the scalar variance used in the example.
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SECTION 4

PROPORTIONAL CONTROLLERS

Interceptlins with proportional control systems

were simulated on a digital computer. Three modes of

control were studied:

Mode A - The thrust is directed along the line-of-

sight towards the target. The possibility

of using a constant lead angle is included.

Mode B - The thrust is directed off the line-of-

sight by an angle proportional to -- r

in the sense required to reduce the rate

of rotation of the line-of-sight.

N|ode C The thrust i, pplied normal to the line-

of-sight in the direction needed to reduce

the rate of rotation of the line-of-sight.

If the interceptor veloci-ty becomes aligned

with line-of-sight, there is an option

either to stop thrusting or to thrust

along the line-of-sight.

By putting limits on the steering angle and raising

the gain, we can also obtain thrusting perpendicular to

the line-of-sight from Mode B. Firing perpendicular to

the line-of-sight worked quite well.

We did not explore all the possible combinations of

initial conditions and control gains. The reachable sets

for the optimal steering were not mapped in detail. It

is not difficult to determine on the basis of physical

considerations which of the possible control schemes are

most desirable. The control must direct the relative

velocity vector towards the origin before the rocket burns

out. If the time of flight in the terminal phase is

shorter than the rocket's burning time and if the trans-

verse velocity component is large compared with AV

available for the rocket, then it is desirable to fire
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slightly backwards. This lengthens the time available

for reducing the transverse component. In effect, this

is P trade between interception time and terminal error.

Firing along the line-of-sight is andesirable in this

situation. On the other hand, if the transverse velocity

is low, the initial miss distance is small,and the time

of flight is long, then the time optimal steering angle

is very close to the line-of-sight. This can be seen

in Figure 23.

Figure 22 shows five trajectories starting from

identical initial conditions. Path number 1 is the time

optimal path; thrusting perpendicular to the line-of-

sight, Mode C, gives path number 2. Mode B produces

path 3 with a miss distance of 24,000 feet. The result

of steering along the line-of-sight, Mode A, is the path

marked 4, with a miss distance of 91,000 feet. The

steering angles used are given in Figure 23.

The gains used in these runs were selected a priori

and were not optimized with respect to the miss distances.

The optimal control system employs a computer to solve a

transcendental equation; the application of this computer

to the problem of gain and lead angle selection would

undoubtedly improve the performance of the proportional

controllers.

The optimal controller nevertheless possesses

L.dvantages which are not matched by the proportional

controllers. The optimal-control computer will minimize

the miss distance instead of interception time if a hit

cannot be scored. The computation of the optimal cont3,ol

also takes into account the terminal coasting phase aftŽer

the propellant is exhausted. Furthermore, the optimal

control produces hits for initial conditions which lie

on the boundary of the region of attainability whereas

the proportional controllers need not do this.
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SECTION-5

SUMMARY AND CONCLUSIONS

A planar time optimal formulation is used to study
the terminal phase of an interception problem. The

optimal steering program for interception in a uniform

gravitational field in the absence of aerodynamic drag

requires the thrust direction to be held constant in

inertial space during the powered portion of flight.

The optimal stee.ring-angle is a function bf the relative

initial position and relative velocity. We have examined

the dependence of the optimal steering angle on the ini-

tial conditions for initial velocities ranging from

5,000 ft/sec to 50,000 ft/sec. The results are presented

in graphical form showing: (1) the range dependence of

the terminal error sensitlvities to error in initial

position and relative velocity measurements taken along
an initial rectilinear coasting path, and (2) the varia-

tion in these terminal error sensitivities along an

optimal interception path.

Simulated interceptions were made using proportIonal

controllers. Three modes of control were tried; thrust-

ing perpendicular to the line-of-sight gave good results

in the casesstudied. The optimal controller is predictive

in nature and takes into account the possibility of a

terminal coasting phase after the propellant is exhausted.

The computer also predicts whether or not a hit is possi-

ble and will minimize the miss distance if an inteirep-

tion is not possible. Further work is needed to iprove
the performance of the proportional controllers, e.,-
selecting th, gain and lead angle as functions of nge,

velocity or combinations of other variables before -

definitive comparic:on can be made with optimal con'-,:ollers.
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One of the results of our work is a flexible digital
computer program with many options, which can simulate

optimal interceptions, generate the error sensitivities

along initial coasting paths and along optimal paths and

make terminal error dispersions studies. A listing of

the program and a set of cards are available at ARAP.

The study of error sensitivities raised several

important questions which are not yet settled. The

computer program, as it now stands, is able to simulate

closed-loop interceptions. Several check problems were

run but systematic studies were not made because of the

dearth of unclassified realistic data on radar and

sensor noise and missile-borne guidance and attitude

control systems. Future research programs in this area

could take advantage of this computer routine to inves-

tigate the behavior of optimally-controllec hypervelocity

interceptions, with and without relative position and

velocity feedback during the burning portion of the

flight. This simulation should include measurement

errors and actuation errors based on experience with

actual equipment tests.
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TABLE 1

SUDV4MARY 7F IN•,RCEP','ION RUNS WITH OPTIMAL COUTROL

Rocket#'

Initial iss •.stance Miss Di',tance Initial Optimal
Range wiltI;lopt with optimal Vel6city Steering

cot trol control (ft/sec) Angle
R(O)(ft) PO (ft) p (ft) V(O) a°

50,000 873 .000 10,000 175.77" " .000 15,000 171.03
" " .000 25,000 155.01
" I 355.0 50,0000 89.79

"1,309 .000 10,000 173.66
" f .000 15,000 166.50
"" .000 25,000 140.94

"" 791.0 50,000 90.29
"I: >745 .000 i0,000 171.54
" t .000 15,000 161.91
" " .000 25,000 123.70
"i 1,228.0 50,000 90.79

" 4,358 .000 10,000 158.75
" " .000 15,000 131.47
""t 2,209.0 25,000 89.86
"" 3,843.0 50,000 93.80
""f,,682 .000 10,000 136.70
"i .000 15,000 13.08
"f" 6,567.0 25,000 94.88
"" 8,179.0 50,000 98.81

125,000 2,182 .000 10,000 178.29" " .000 15,000 176.53
"f ".000 25,000 170.72
" " .000 50,000 139.36
" 3,272 .000 10,000 177.43
" 1 .000 15,000 174.79
" i .000 25,000 166.03"f .000 50,000 105.63

"4,362 .000 10,000 176.58
""f .000 15,000 173.05
"" .000 25,000 161.28
"" 936.0 50,000 88.70"" lO,894 .000 10,000 171.48

""".000 15, 000 162.64
"it .000 25,9000 129.56

"7,480.0 50,000 91.70
" 21,706 .000 10,000 163.17

".000 15,000 145.35"" 6,005.0 25,000 89.98
" " 18,355.0 50,o0o0 96.72
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TABLE 1 (Con't.)

ivT1ial Miss Distance Miss Distance Initial Optimal
-ige without with optimal Velocity Steering

control control (ft/sec) Angle
__ __ tP ((t) p (ft) V(O) ao

200,000 3,490 .000 10,000 173.89
".000 15,000 1O77.94
".000 25,000 174.56
.000 50,000 156.96

5,235 .000 10,000 178.34
.000 15,000 176.92
".000 25,000 171.83
.000 50,000 144.28

6, o80 .000 10,000 177.78
.000 15,000 175.89
".000 25,000 169.10
".000 50,000 129.52

"17,431 .000 10,000 174.47
"" .000 15,000 169.76

" ".000 25,000 152.47
" r 8,067.0 50,000 89.10

"34,730 .000 10,000 169.03
"" .000 15,000 159.78

it .000 25,000 122.65
"" 25,508.0 50,000 94.12

250,000 4,363 .000 10,000 179.04
"" .000 15,000 178.32
" ".000 25,000 175.86

"" .000 50,000 162.31

6,544 .000 10,000 178.56
1 .000 15f000 177.48

".000 25,000 173.80""".000 50,0oo0 153.O1
" 8,725 .000 10,0000 178.08

".000 15,000 176.65
".000 25,000 171.73
".000 50,000 143.03

"21,789 .000 10,000 175.21
"" .000 15,000 171.64
".000 25,000 159.32

"6,366.0 50,000 86.93" 43,412 .000 10,000 170.49
" " .000 15,000 163.41
"It .000 25,000 1,8.76
"it 28,175.0 50,000 91.92

500cooo 8,726 .000 10,000 179.28
"".000 15,000 178.85

".000 25,000 177.80
".000 50,000 172.88

"13,088 .000 10,000 178.93
".000 15,000 178.28

"" .000 25,000 176.70
".000 50,000 169.30



TABLE 1 (Con't.)

Initial Miss Distance Miss Distance Initial Optimal
Range without with optimal Velocity Steering

control control (ft/',ec) Angle
R(0)(ft) PO (ft) p (ft) V(O) ac

500,00oo 17,450 .oo0 10,000 178.57
""1 .000 15, 000 177.71
" " .000 25,000 175.60

".000 50,000 165.71
"f •43,578 .000 1o- 000-
"" .000 15,000 174.28

".000 25,000 168.99
"" .000 50,000 143.41

"86,824 .000 10,000 172.87
"? .000 15,000 168.60
"" .000 25,000 157.96
" " .000 50,000 89.24

Rocket#2

50,0ooo 873 .000 1.,o000 171.71
" t .000 15,000 161.77
" " .000 25,000 121.54
" " 618.o 50,000 90.41
" 1,309 .000 10,00 167.53
fi t .000 15,000 152.13

"273.0 25,000 89.08
" 1,055.0 50,000 90.91

"1,745 .000 10i,000 163.31
"" .000 15,000 141.7]

"710.0 25,000 89.58
"1,491.0 50,000 90.91

"4,358 .000 10,o000 135.85
"..000 0 0 5.40

4"1050 50,000 94.41

"8,682 .000 10,000 13.83
.000 15,000 10.89

7,672.0 25,000 97.60
"8,435.0 50,000 99.42

12r, O00 2,182 .000 10,000 176.60
.000 15,000 172.85
.000 25,000 160.39

S549.0 50,000 89.47
"3, F2 .000 10,000 174.90

"..00 15,000 169.26

".000 25,000 149.91" " " ,640.0 5000 89.097

4'462 .000 10:000 173.19
.000 5,000 1656,- .. • ,' ,.< -. 000 1 8 •

." " 2,731.0 50,000 90.47
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TALLE 1 (Con't.)

initlal Miss Distarn.e Miss Distant< Initial Optimal
Range without with optimal Velocity Steering

control control A( ftsea)1 AngleR(O•(r'. . ('f't'. p ('tj, I.. V(o).
f 0

125,1000 10, -94 .CO0 IO, 162.97
"H ..OO 15, OOO 142.6d

"9,271.0 50,000 93.47
" 21,706 .000 i0, OCC 145.89""00 .0 15, C00 5.-09

"14,932.0 25,000 93.35
"20,117.0 50,000 98.49

200,000 3,490 .00 1,000 177 .85
"H .000 15,000 175.6(

". 000 25,000 16.8.17
".000 50,000 124.64

"5,235 .000 10,000 176.78""i .0o0 15,000 173.40
"" .000 25,000 162.14
" "930 oo0, ooo 88.94
" 6,980 .000 10,000 175.71

"" .000 15, 000 171.20
" i .000 25,000 155.95

"" 2,680.0 50,000 89.44
"17,431 .000 10,000 169.31

"" .000 15,000 157.88
" I .000 25,000 lO6.85

"" 13,151.0 50,000 92.44"34,730 .000 10, 000 58.86

".000 15,000 134.95
"15,904.0 25,000 87.86
"" 30,533.0 50, OO 97.46

250,000 4,363 .000 10,000 178.29

"" .000 15,000 176.53
If .000 25,000 170.72
"it .000 50,000 139.36

"6,544 .000 10,000 177.43
""V .000 15,000 174.79"" .000 25,000 166.03
""1 .000 50,000 105.63" 8,725 .000 10,000 176.58
""t .000 15,000 173.05
"" .000 25,000 161.28
"" 1,871.0 50,000 88.70" 21,789 .ooo 10,000 171.48
" " .000 15,000 162.64
" " .000 25,000 129.56" " 14,960.0 50,000 91.70" 43,412 .000 10,000 163.17
"" .000 15,000 145.35
"" 12,011.0 25,000 82.98"" 36,711.0 50,OJO 96.72



TAPBLi 1 (Conrt.)

Init1 I Miss Distance. Mizs Dtan - cc Initial Optima i
Range without with optim1al Velonitv Steering

control control (ft/sec/ Angle
R(O)(ft) PO (ift) p (t) v(O)

500, 000 8,726 .000 10, 0W 170 04
"".O0 15, 000 178.32
"Ou.o 25,000 175.86
".000 50,000 162.31

"13,088 .000 1o,0oo 178.56
"I .00C 15,000 177.43
"" (_" .0 25,000 173.80
""f .000 50, 000 153 .01

"17,450 .000 1o0,000 178.08
"If .000 15,000 176.65

"" I .000 25, 000 171.73

"" .000 50,000 143.03
"43,578 .000 10,000 175.21

" i .000 15,000 171.64
" " .000 25,000 159.32

"12,732.0 5r,0 0o 86.93
"86,824 .000 10,000 1(0.49

" " .000 15,000 163.21

"" .000 25,000 138.76
"56,349.0 50,000 91.92
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A PP END NX

INTERCEPT LO§IC AND EQUATIONS

To simplify the bookkeeping in the program we make

some changes in notation. Let x = x, , y = x. , v = x ,

V "

The equatiorns of' motlon of the intercept vehicle

wiLth origin at the target art:

= V

2 = 4

=C 3 a(t) cos a(t)

= a(t) sin a(t)

where a(t) c mo t

0T 
T t

The thrust angle program, a(t), is required to

minimize the time to intercept (x 1 = x 2 = 0) or, if

that Is impossible, to mPnimize the distance to the

target (r,-in V1+2) The application of Pontryagin's

Maximum Principle to the problem yields the result that

a&(t) is equal to some constant a° . The equations above

can then be integrated to yield:

x1(t) = A(t) cos a°0 + X3 (O)t + xl(O)

x 2 (t) = A(t) sin a°+ x 4 (0)t + x 2 (O)

x 3(t) = iý(t) Cos ao+ x 3 (O)

x4 (t) = A(t) sin a0 + x4 (0)
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and tb denotes the Instant at which the rocket, engine

stops burning.

The problem is now one of determIning to and ao

uch that xl(t°) =x 2 (t 0 ) - 0 or, Iif that is impossible,

such that -, t/x(t 0 ) + x0(t-) is minimized, t° being the

minimum time to intercept or, if that is impossible, the

time to minimum distance from the target. If the coordi-

nate system is changed so that the intercept vehicle is

initially at rest at the origin and the target is travel-

ling on a straight line at constant velocity, then A(t)

represents the distance of the intercept vehicle from the

new origin at time t. The equations of motion of the

target vehicle in the new coordinates become:

yl = Y3

ý2 - Y4
Y3 - 0

=4 0
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or

yljt) x2 (O) + x3
y• x=2(0) + X )t

y3() =x 3 (O)
y4 x) 3 (0)

The ý"istance of th: target vehicle from the origin

thE rew c ýrd:inate system is defined as E(t), or ("1g. 5a)

E(t) 2~(t) + y2(t)

whfici yields the derivatives to be used later

E Ey•I(t)y 3 (t) + Y2 (t)y 4 (t)]

( = 1 {l(t)x 4 (O) - Y2 (t)x 3 (O)

7 xl(O)x 4 (O) 2(o)x3 (o)]'f I[
E(•;)=- 3f Y(t)y3 (t)+y 2 (t)y 4 (t) Xl(O)x 4 (o)-x 2 (O)x 3 (O)

At time t the intercept vehicle can reach any

point on the circumference of a circle of radius A(t)

by suitable choice of a. Hence, the original problem

is equivalent to one of determining the smallest to

such that A(t°) = E(t°) or, if that is impossible, the

t such that IA(t°) - E(t°)l is a minimum. The angle a°

can be determined from

y1 (to) = E(t°) cos (a -)

Y2 (tO) = E(tO) sin (a0o 7r)

Clearly, whenever IA(t°) - E(t°)l is a minimum,

(A(t°) - E(tC*/] 2  is a minimum and vice versa. Since

the latter function is more tractable analytically, it

will henceforth be used to determine t°. Formally set-

ting the derivative of [A(t) - E(t)]2 equal to zero,

d 2 set
dt [A(t) - Et)] :0 2[A(t) - E(t)I[A(t) E(t)]

yields a necessary condition for [A(t) - E(t)] 2 to be a
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minimum; that is, A(t) = E(t), or A(t+1) i(t). As P

step in determining the possiole roots of thest- equatIons,

the quantities to, t1, t 2 , t3 are defined as the roots

(if they extct) of the eiuations

E(to) = )

or

o [x (O)y 3 (o), + X o40,_ + (0)

A(t1) - i(t1) = 0Act,,) - t•(t 2 ) =O , t 't
t(t - 2t 3 2 3

The quantity t0 (generally not equal to ze-ro) is the

time at which the target vehicle is closest to the origin
(the starting point for the intercept vehicle). The quan-

tities tl, t 2 , t3 are used in Chart I to indicate roots

of the appropriate equations above, when they are known

to exist. Figure 5(a) illustrates the various critical

instantc

The above facts are used in Chart I to determine the

logic necessary to locate the solution to and to determine

whether a CATCH [A(t°) - E(t°)] or a MISS [min[A(t0)-E(tO)]2]

is possible. Since the A equations change for t > tb1

tb is used to indicate that the equations for t < tb
4-

should be used and vice versa for tb. The times t 1 , t 2 ,

t3 and to may all be found by using Newton's method for

locating the zeros of a function. In the chart, f is

used to indicate the function whose zero is sought. Since

some up- the functions have multiple zeros (and/or their

derivatives have zeros), the symbol t5 is used to indicate

a starting point for Newton's method. Due to monotone

properties of the functions and derivatives involved, use

of tS as a starting point guarantees the convergence of

Newton's method.

There are times when it might be desirable to let

the intercept vehicle fire at some instant later than
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Figure 5. Geometrical Configuration of Intercept Trajectories.
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zero, especlally if' the target is approaching (t0 > 0),

see Figure 5(L). There Is genierally a maximum permis-

sible period o" initial coa t, deflnred as t* shown In

Figure 5(b). The remaining material of' this appendix

deals with the analysls oF this cTse. In ordcr ror 7

CATCH to be possible A(t° -tu = E(t") Differentiatit ng

with respect to o, one obtains

or

Et~'dto

In order for t' to be maximum dt- 0; hence two 0.cs
sary conditions 1'or the determination of" t and td are

A(t -t* E(°

The problem of determining to and t' can be simplified if

E(t) and A(t) are expressed in terms of EH E(t ),
min'mum distance of' thc radius o.[ *ar'sec .ro thf ini.er-

e pt origIn, V / !x;(' ± x4(0), the speed of the

target vehicle, and 0(t), the angle between the posi-

tion of the target vehicle at to and its position at

any later time t,with &(t) restricted to the first quadrant.

Then
E(t) Eo/cos OW()
tan 8(t) = Vrt - to /E

[se 
2 o k)] I 0V/E

dt -
E(t) = B0 sin e(t) sec 2 6(t,) d(t)

dt
= V sin 9(t)

If At=A to t*, the problem has become one of determining

At and e(to) such that

A(At) = Elcos 8(t°)

A(At) = V sin 6(to)

when 0(t0 ) is eliminated, the following equation is
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obtained [ E

If A 
4-

F(t,) 4) 4 VE LvA(t te

then

2A(t)/(t)K[A(t)A(t) + [A(t)]2 - VC]

and I ! t _ hf -"oot o_" ( .! , •1h '-i ri T;' -' .

l~e4A(tf+ 00
t~OL V

11-M viA(tT i AL-iTbL I
tt LL to J f then

it is easy to see that, if ý(tb" < V, then F ,t" has at

least one positlve real zero. If F(tb) < O, thun the

zero must be less than tb (F(U) = [VE 02 > 0 . if

F(tb) > 0, then with F(t) rewritten as

F't) 'VA(t)12 LAV] - 1+ t t

the limit of F(t) as t - co is clearly negative,

and hence F(t) has a zero for t > tb. If ý(tb) > V1
the intercept vehicle can fire at any time and always

catch the target because its burnout velocity is greaterr

than the velocity of the target. Chart.II indicates the

logic steps necessary to locate the desired zero of

F(t).

Once ,t is determined, t0  is specified by
E(t°) = A(At) with t 0  chosen as the largest root

of the equation. If t* = t. - At < 0, then intercep-

tion is Impossible and the intercept vehicle should

fire at t = 0.
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Figure 18. Summery, Rocket #1, 0 = 180.5°o, Po 4 363 ft.,

R(O) = 5W,000 ft., V(O) - I - 25,000,

II - 50,O00, V - 10,000 ft./sec.
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Figure 19. Summary, Rocket #2, -, 180.50, po - 4363 ft.,
R(O) - 500,000 ft., V(O) -III - 25,000,

Iv - 50,O0 ft./sea.
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